ICASE REPORT

ON THE MATRIX EQUATIONS AH + HA* = A*H + HA = I

David Gottlieb

and

Max D. Gunzburger

Report No. 76-12

April 21, 1976

(NASA-CR-185726) ON THE MATRIX EQUATIONS AH + HA* = A*H + HA = I (ICASE) 8 p

N89-71358

Unclas 00/64 0224349

INSTITUTE FOR COMPUTER APPLICATIONS
IN SCIENCE AND ENGINEERING

Operated by the

UNIVERSITIES SPACE RESEARCH ASSOCIATION

at

NASA Langley Research Center Hampton, Virginia ON THE MATRIX EQUATIONS AH + HA* = A*H + HA = I

David Gottlieb

and

Max D. Gunzburger

This paper considers the simultaneous solution of the matrix equations AH + HA* = A*H + HA = I where H is Hermitian. A full characterization of A in terms of a given H is obtained. Various results are also obtained for those H satisfying the equations with a given A.

This paper was prepared as a result of work performed under NASA Contract No. NAS1-14101 while the authors were in residence at ICASE, NASA Langley Research Center, Hampton, VA 23665.

I. Introduction

We consider the problem of finding those matrices A and Hermitian matrices H which simultaneously satisfy

$$AH + HA* = I$$

and

(1)

A*H + HA = I.

This problem was suggested by Taussky [3]. Davis [2] obtained some results for normal or real matrices A. Partial results were also obtained by Barker [1] who was mostly concerned with ascertaining conditions such that an A which satisfies (1) is normal. In this work we obtain more general results which include some results of Davis and Barker as special cases. In one instance, a result of Barker is proved under a less stringent hypothesis.

We shall find it convenient to consider

$$(A+A*)H + H(A+A*) = 2I$$
 (2)

and

$$(A-A^*)H = H(A-A^*)$$
 (3)

which are equivalent to (1). Then from either of (1) and (2) it is well known, e.g. Taussky [4], that A, H and (A+A*) must be nonsingular. Also (3) obviously states that H and the skew-Hermitian part of A must commute if (1) is to hold.

II. Characterization of A for Given H

Suppose that U is a unitary matrix which diagonalizes H, i.e.

$$U*HU = G = diag(\gamma_1, ..., \gamma_n)$$
 (4)

where i are the eigenvalues of H. Then define

$$B = U*(A+A*)U$$

and

(5)

$$S = U*(A-A*)U$$

so that (2) and (3) become

$$BG + GB = 2I \tag{6}$$

and

$$SG = GS. (7)$$

For a given matrix H we may completely characterize the matrix A by:

THEOREM 1. Let γ_j , j=1,...,n, be the eigenvalues and U a unitary diagonalizer of a given Hermitian matrix H. Then the Hermitian part of a matrix A which satisfies (1) is given by

$$A + A^* = H^{-1} + UB_1U^*$$
 (8)

where B_1 is a Hermitian matrix whose entries are zero except when $\gamma_i + \gamma_j = 0, \text{ in which case the (i,j) entry of } B_1 \text{ is arbitrary. Furthermore, the skew-Hermitian part of } A \text{ is given by }$

$$A - A^* = US_1U^* \tag{9}$$

where s_1 is a skew-Hermitian matrix whose diagonal entries are arbitrary imaginary numbers and whose (i,j)th entry is zero whenever $\gamma_i \neq \gamma_j$ and is arbitrary otherwise.

Proof: If b_{ij} is an element of the Hermitian matrix B defined by (5), then (6) yields

Since H is nonsingular, $b_{ii} = 1/\gamma_i$, $b_{ij} = 0$ if $(\gamma_i + \gamma_j) \neq 0$, and $b_{ij} = b_{ji}$ is arbitrary whenever $(\gamma_i + \gamma_j) = 0$. Then $B = G^{-1} + B_1$, which using (4) and (5) results in (8). If s_{ij} is an element of the skew-Hermitian matrix S, then (7) can be expressed as

$$s_{k\ell}(\gamma_k - \gamma_\ell) = 0$$
 $k,\ell = 1,...,n$

so that s_{kk} is arbitrary, $s_{k\ell} = 0$ whenever $\gamma_k \neq \gamma_\ell$, and $s_{k\ell}$ is arbitrary whenever $\gamma_k = \gamma_\ell$. Thus, with $S_1 = S$, (5) results in (9). \blacksquare A consequence of Theorem 1 is:

COROLLARY 1.1. If $(\gamma_i + \gamma_j) \neq 0$ for all i and j and if (1) holds, then A and H commute and A is normal.

Phoof: If $(\gamma_i + \gamma_j) \neq 0$ for all i and j, then $B_1 = 0$ and $(A+A*) = H^{-1}$ so that (A+A*) trivially commutes with H. But from (3), (A-A*) also commutes with H so that A and H commute. Furthermore, if (A-A*) commutes with H, it also commutes with H^{-1} , so that (A-A*) commutes with (A+A*) and therefore A is normal.

This corollary was proven by Barker [1] with the additional (and unnecessary) assumption of $\gamma_i \neq \gamma_j$. Furthermore, the proof of the corollary contains the proof of the following theorem, which is also contained in Barker:

THEOREM 2. If (1) holds for some Hermitian matrix H and if (A+A*) and H commute, then A is normal.

Then we also have:

COLLARY 2.1. If (1) holds for some Hermitian matrix H and if A and H commute, then A is normal.

Proof: If A and H commute, then so do (A+A*) and H, so that by Theorem 2, A is normal.

III. Characterization of H for Given A

We now seek Hermitian matrices H such that (1) is satisfied for a given complex matrix A. We first characterize such H using the diagonalizer of the skew-Hermitian part of the given matrix A:

THEOREM 3. Let V be a unitary diagonalizer of the skew-Hermitian part of a given matrix A. Let B = V*(A+A*)V. Then if the (i,j) element b_{ij} of B is zero whenever $(b_{ii}+b_{jj}) \neq 0$, H given by

$$H = V \operatorname{diag}(b_{11}^{-1}, \dots, b_{nn}^{-1})V^*$$
 (10)

is a solution of (1).

Proof: With H given by (10), (2) can be expressed as

which is an identity for i = j. For $i \neq j$, (11) becomes

$$b_{ij}(b_{ii}+b_{jj}) = 0$$

which is again an identity due to the hypothesis of the theorem. Furthermore, (3) holds trivially, since under the unitary transformation V, H and (A-A*) are both diagonalized. Since (2) and (3) hold, then so does (1).

Remark: If the eigenvalues of (A-A*) are distinct, then the hypothesis about the elements of B are necessary for a solution H of (1) to exist. Furthermore, if such a solution does exist, it is uniquely given by (10).

We now consider the case where (A+A*) and -(A+A*) have no common eigenvalue:

THEOREM 4. Let β_i , $i=1,\dots,n$, be the eigenvalues and W be a unitary diagonalizer of the Hermitian part of a given matrix A. Let $S=W^*(A-A^*)W$. Then if $(\beta_i+\beta_j)\neq 0$ for all i and j, (1) has a solution H only if $s_{ij}=0$ whenever $\beta_i\neq \beta_j$. If this is the case, then $H=(A+A^*)^{-1}$.

Proof: Let

$$G = W*HW . (12)$$

Then (2) can be expressed as

where g_{ii} is an element of G, so that

$$g_{ii} = 1/\beta_i$$
 and $g_{ij} = 0$, $i \neq j$. (13)

Then (3) can be written as

$$S_{ij}(g_{ii}-g_{jj}) = 0$$
 $i,j = 1,...,n$ or from (13)

$$s_{ij} (\beta_i - \beta_j) = 0 \quad i, j = 1,...,n$$
 (14)

where s_{ij} is an element of S. Therefore either $s_{ij} = 0$ or $\beta_i = \beta_j$ for a solution to exist. Then if (14) is valid for all i and j, (12) and (13) yield $H = (A+A*)^{-1}$.

Another result of Barker follows immediately from this theorem:

COROLLARY 4.1. If (1) holds for some Hermitian matrix H and if (A+A*) and -(A+A*) have no common eigenvalue, then A is normal.

Proof: By Theorem 4, if (A+A*) and -(A+A*) have no common eigenvalue and (1) holds, then $H = (A+A*)^{-1}$ so that trivially (A+A*) and H commute. Then, by Theorem 2, A is normal.

References

- [1] G. P. Barker, Normal matrices and the Lyapunov equations, SIAM J. Appl. Math. 26 (1974), 1-4.
- [2] C. W. Davis, The Lyapunov and Stein transformation, Ph.D. Thesis, Auburn (1971), 6-13.
- [3] O. Taussky, A generalization on a theorem of Lyapunov, J. Soc. Indust. Appl. Math 9 (1961), 640-643.
- [4] O. Taussky and H. Wielandt, On the matrix function AX + X'A', Arc. Rational Mech. Anal. 9 (1962), 93-96.